[ Index ] |
|
Code source de jpGraph 2.2 |
1 <?php 2 /*======================================================================= 3 // File: JPGRAPH_PIE3D.PHP 4 // Description: 3D Pie plot extension for JpGraph 5 // Created: 2001-03-24 6 // Ver: $Id: jpgraph_pie3d.php 781 2006-10-08 08:07:47Z ljp $ 7 // 8 // Copyright (c) Aditus Consulting. All rights reserved. 9 //======================================================================== 10 */ 11 12 //=================================================== 13 // CLASS PiePlot3D 14 // Description: Plots a 3D pie with a specified projection 15 // angle between 20 and 70 degrees. 16 //=================================================== 17 class PiePlot3D extends PiePlot { 18 private $labelhintcolor="red",$showlabelhint=true; 19 private $angle=50; 20 private $edgecolor="", $edgeweight=1; 21 private $iThickness=false; 22 23 //--------------- 24 // CONSTRUCTOR 25 function PiePlot3d($data) { 26 $this->radius = 0.5; 27 $this->data = $data; 28 $this->title = new Text(""); 29 $this->title->SetFont(FF_FONT1,FS_BOLD); 30 $this->value = new DisplayValue(); 31 $this->value->Show(); 32 $this->value->SetFormat('%.0f%%'); 33 } 34 35 //--------------- 36 // PUBLIC METHODS 37 38 // Set label arrays 39 function SetLegends($aLegend) { 40 $this->legends = array_reverse(array_slice($aLegend,0,count($this->data))); 41 } 42 43 function SetSliceColors($aColors) { 44 $this->setslicecolors = $aColors; 45 } 46 47 function Legend($aGraph) { 48 parent::Legend($aGraph); 49 $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol); 50 } 51 52 function SetCSIMTargets($targets,$alts=null) { 53 $this->csimtargets = $targets; 54 $this->csimalts = $alts; 55 } 56 57 // Should the slices be separated by a line? If color is specified as "" no line 58 // will be used to separate pie slices. 59 function SetEdge($aColor='black',$aWeight=1) { 60 $this->edgecolor = $aColor; 61 $this->edgeweight = $aWeight; 62 } 63 64 // Dummy function to make Pie3D behave in a similair way to 2D 65 function ShowBorder($exterior=true,$interior=true) { 66 JpGraphError::RaiseL(14001); 67 //('Pie3D::ShowBorder() . Deprecated function. Use Pie3D::SetEdge() to control the edges around slices.'); 68 } 69 70 // Specify projection angle for 3D in degrees 71 // Must be between 20 and 70 degrees 72 function SetAngle($a) { 73 if( $a<5 || $a>90 ) 74 JpGraphError::RaiseL(14002); 75 //("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees."); 76 else 77 $this->angle = $a; 78 } 79 80 function Add3DSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle 81 82 $sa *= M_PI/180; 83 $ea *= M_PI/180; 84 85 //add coordinates of the centre to the map 86 $coords = "$xc, $yc"; 87 88 //add coordinates of the first point on the arc to the map 89 $xp = floor($width*cos($sa)/2+$xc); 90 $yp = floor($yc-$height*sin($sa)/2); 91 $coords.= ", $xp, $yp"; 92 93 //If on the front half, add the thickness offset 94 if ($sa >= M_PI && $sa <= 2*M_PI*1.01) { 95 $yp = floor($yp+$thick); 96 $coords.= ", $xp, $yp"; 97 } 98 99 //add coordinates every 0.2 radians 100 $a=$sa+0.2; 101 while ($a<$ea) { 102 $xp = floor($width*cos($a)/2+$xc); 103 if ($a >= M_PI && $a <= 2*M_PI*1.01) { 104 $yp = floor($yc-($height*sin($a)/2)+$thick); 105 } else { 106 $yp = floor($yc-$height*sin($a)/2); 107 } 108 $coords.= ", $xp, $yp"; 109 $a += 0.2; 110 } 111 112 //Add the last point on the arc 113 $xp = floor($width*cos($ea)/2+$xc); 114 $yp = floor($yc-$height*sin($ea)/2); 115 116 117 if ($ea >= M_PI && $ea <= 2*M_PI*1.01) { 118 $coords.= ", $xp, ".floor($yp+$thick); 119 } 120 $coords.= ", $xp, $yp"; 121 $alt=''; 122 if( !empty($this->csimalts[$i]) ) { 123 $tmp=sprintf($this->csimalts[$i],$this->data[$i]); 124 $alt="alt=\"$tmp\" title=\"$tmp\""; 125 } 126 if( !empty($this->csimtargets[$i]) ) 127 $this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\" $alt />\n"; 128 } 129 130 function SetLabels($aLabels,$aLblPosAdj="auto") { 131 $this->labels = $aLabels; 132 $this->ilabelposadj=$aLblPosAdj; 133 } 134 135 136 // Distance from the pie to the labels 137 function SetLabelMargin($m) { 138 $this->value->SetMargin($m); 139 } 140 141 // Show a thin line from the pie to the label for a specific slice 142 function ShowLabelHint($f=true) { 143 $this->showlabelhint=$f; 144 } 145 146 // Set color of hint line to label for each slice 147 function SetLabelHintColor($c) { 148 $this->labelhintcolor=$c; 149 } 150 151 function SetHeight($aHeight) { 152 $this->iThickness = $aHeight; 153 } 154 155 156 // Normalize Angle between 0-360 157 function NormAngle($a) { 158 // Normalize anle to 0 to 2M_PI 159 // 160 if( $a > 0 ) { 161 while($a > 360) $a -= 360; 162 } 163 else { 164 while($a < 0) $a += 360; 165 } 166 if( $a < 0 ) 167 $a = 360 + $a; 168 169 if( $a == 360 ) $a=0; 170 return $a; 171 } 172 173 174 175 // Draw one 3D pie slice at position ($xc,$yc) with height $z 176 function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) { 177 178 // Due to the way the 3D Pie algorithm works we are 179 // guaranteed that any slice we get into this method 180 // belongs to either the left or right side of the 181 // pie ellipse. Hence, no slice will cross 90 or 270 182 // point. 183 if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) { 184 JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice'); 185 exit(1); 186 } 187 188 $p[] = array(); 189 190 // Setup pre-calculated values 191 $rsa = $sa/180*M_PI; // to Rad 192 $rea = $ea/180*M_PI; // to Rad 193 $sinsa = sin($rsa); 194 $cossa = cos($rsa); 195 $sinea = sin($rea); 196 $cosea = cos($rea); 197 198 // p[] is the points for the overall slice and 199 // pt[] is the points for the top pie 200 201 // Angular step when approximating the arc with a polygon train. 202 $step = 0.05; 203 204 if( $sa >= 270 ) { 205 if( $ea > 360 || ($ea > 0 && $ea <= 90) ) { 206 if( $ea > 0 && $ea <= 90 ) { 207 // Adjust angle to simplify conditions in loops 208 $rea += 2*M_PI; 209 } 210 211 $p = array($xc,$yc,$xc,$yc+$z, 212 $xc+$w*$cossa,$z+$yc-$h*$sinsa); 213 $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); 214 215 for( $a=$rsa; $a < 2*M_PI; $a += $step ) { 216 $tca = cos($a); 217 $tsa = sin($a); 218 $p[] = $xc+$w*$tca; 219 $p[] = $z+$yc-$h*$tsa; 220 $pt[] = $xc+$w*$tca; 221 $pt[] = $yc-$h*$tsa; 222 } 223 224 $pt[] = $xc+$w; 225 $pt[] = $yc; 226 227 $p[] = $xc+$w; 228 $p[] = $z+$yc; 229 $p[] = $xc+$w; 230 $p[] = $yc; 231 $p[] = $xc; 232 $p[] = $yc; 233 234 for( $a=2*M_PI+$step; $a < $rea; $a += $step ) { 235 $pt[] = $xc + $w*cos($a); 236 $pt[] = $yc - $h*sin($a); 237 } 238 239 $pt[] = $xc+$w*$cosea; 240 $pt[] = $yc-$h*$sinea; 241 $pt[] = $xc; 242 $pt[] = $yc; 243 244 } 245 else { 246 $p = array($xc,$yc,$xc,$yc+$z, 247 $xc+$w*$cossa,$z+$yc-$h*$sinsa); 248 $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); 249 250 $rea = $rea == 0.0 ? 2*M_PI : $rea; 251 for( $a=$rsa; $a < $rea; $a += $step ) { 252 $tca = cos($a); 253 $tsa = sin($a); 254 $p[] = $xc+$w*$tca; 255 $p[] = $z+$yc-$h*$tsa; 256 $pt[] = $xc+$w*$tca; 257 $pt[] = $yc-$h*$tsa; 258 } 259 260 $pt[] = $xc+$w*$cosea; 261 $pt[] = $yc-$h*$sinea; 262 $pt[] = $xc; 263 $pt[] = $yc; 264 265 $p[] = $xc+$w*$cosea; 266 $p[] = $z+$yc-$h*$sinea; 267 $p[] = $xc+$w*$cosea; 268 $p[] = $yc-$h*$sinea; 269 $p[] = $xc; 270 $p[] = $yc; 271 } 272 } 273 elseif( $sa >= 180 ) { 274 $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea); 275 $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); 276 277 for( $a=$rea; $a>$rsa; $a -= $step ) { 278 $tca = cos($a); 279 $tsa = sin($a); 280 $p[] = $xc+$w*$tca; 281 $p[] = $z+$yc-$h*$tsa; 282 $pt[] = $xc+$w*$tca; 283 $pt[] = $yc-$h*$tsa; 284 } 285 286 $pt[] = $xc+$w*$cossa; 287 $pt[] = $yc-$h*$sinsa; 288 $pt[] = $xc; 289 $pt[] = $yc; 290 291 $p[] = $xc+$w*$cossa; 292 $p[] = $z+$yc-$h*$sinsa; 293 $p[] = $xc+$w*$cossa; 294 $p[] = $yc-$h*$sinsa; 295 $p[] = $xc; 296 $p[] = $yc; 297 298 } 299 elseif( $sa >= 90 ) { 300 if( $ea > 180 ) { 301 $p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea); 302 $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); 303 304 for( $a=$rea; $a > M_PI; $a -= $step ) { 305 $tca = cos($a); 306 $tsa = sin($a); 307 $p[] = $xc+$w*$tca; 308 $p[] = $z + $yc - $h*$tsa; 309 $pt[] = $xc+$w*$tca; 310 $pt[] = $yc-$h*$tsa; 311 } 312 313 $p[] = $xc-$w; 314 $p[] = $z+$yc; 315 $p[] = $xc-$w; 316 $p[] = $yc; 317 $p[] = $xc; 318 $p[] = $yc; 319 320 $pt[] = $xc-$w; 321 $pt[] = $z+$yc; 322 $pt[] = $xc-$w; 323 $pt[] = $yc; 324 325 for( $a=M_PI-$step; $a > $rsa; $a -= $step ) { 326 $pt[] = $xc + $w*cos($a); 327 $pt[] = $yc - $h*sin($a); 328 } 329 330 $pt[] = $xc+$w*$cossa; 331 $pt[] = $yc-$h*$sinsa; 332 $pt[] = $xc; 333 $pt[] = $yc; 334 335 } 336 else { // $sa >= 90 && $ea <= 180 337 $p = array($xc,$yc,$xc,$yc+$z, 338 $xc+$w*$cosea,$z+$yc-$h*$sinea, 339 $xc+$w*$cosea,$yc-$h*$sinea, 340 $xc,$yc); 341 342 $pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea); 343 344 for( $a=$rea; $a>$rsa; $a -= $step ) { 345 $pt[] = $xc + $w*cos($a); 346 $pt[] = $yc - $h*sin($a); 347 } 348 349 $pt[] = $xc+$w*$cossa; 350 $pt[] = $yc-$h*$sinsa; 351 $pt[] = $xc; 352 $pt[] = $yc; 353 354 } 355 } 356 else { // sa > 0 && ea < 90 357 358 $p = array($xc,$yc,$xc,$yc+$z, 359 $xc+$w*$cossa,$z+$yc-$h*$sinsa, 360 $xc+$w*$cossa,$yc-$h*$sinsa, 361 $xc,$yc); 362 363 $pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa); 364 365 for( $a=$rsa; $a < $rea; $a += $step ) { 366 $pt[] = $xc + $w*cos($a); 367 $pt[] = $yc - $h*sin($a); 368 } 369 370 $pt[] = $xc+$w*$cosea; 371 $pt[] = $yc-$h*$sinea; 372 $pt[] = $xc; 373 $pt[] = $yc; 374 } 375 376 $img->PushColor($fillcolor.":".$shadow); 377 $img->FilledPolygon($p); 378 $img->PopColor(); 379 380 $img->PushColor($fillcolor); 381 $img->FilledPolygon($pt); 382 $img->PopColor(); 383 } 384 385 function SetStartAngle($aStart) { 386 if( $aStart < 0 || $aStart > 360 ) { 387 JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.'); 388 } 389 $this->startangle = $aStart; 390 } 391 392 // Draw a 3D Pie 393 function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z, 394 $shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) { 395 396 //--------------------------------------------------------------------------- 397 // As usual the algorithm get more complicated than I originally 398 // envisioned. I believe that this is as simple as it is possible 399 // to do it with the features I want. It's a good exercise to start 400 // thinking on how to do this to convince your self that all this 401 // is really needed for the general case. 402 // 403 // The algorithm two draw 3D pies without "real 3D" is done in 404 // two steps. 405 // First imagine the pie cut in half through a thought line between 406 // 12'a clock and 6'a clock. It now easy to imagine that we can plot 407 // the individual slices for each half by starting with the topmost 408 // pie slice and continue down to 6'a clock. 409 // 410 // In the algortithm this is done in three principal steps 411 // Step 1. Do the knife cut to ensure by splitting slices that extends 412 // over the cut line. This is done by splitting the original slices into 413 // upto 3 subslices. 414 // Step 2. Find the top slice for each half 415 // Step 3. Draw the slices from top to bottom 416 // 417 // The thing that slightly complicates this scheme with all the 418 // angle comparisons below is that we can have an arbitrary start 419 // angle so we must take into account the different equivalence classes. 420 // For the same reason we must walk through the angle array in a 421 // modulo fashion. 422 // 423 // Limitations of algorithm: 424 // * A small exploded slice which crosses the 270 degree point 425 // will get slightly nagged close to the center due to the fact that 426 // we print the slices in Z-order and that the slice left part 427 // get printed first and might get slightly nagged by a larger 428 // slice on the right side just before the right part of the small 429 // slice. Not a major problem though. 430 //--------------------------------------------------------------------------- 431 432 433 // Determine the height of the ellippse which gives an 434 // indication of the inclination angle 435 $h = ($angle/90.0)*$d; 436 $sum = 0; 437 for($i=0; $i<count($data); ++$i ) { 438 $sum += $data[$i]; 439 } 440 441 // Special optimization 442 if( $sum==0 ) return; 443 444 if( $this->labeltype == 2 ) { 445 $this->adjusted_data = $this->AdjPercentage($data); 446 } 447 448 // Setup the start 449 $accsum = 0; 450 $a = $startangle; 451 $a = $this->NormAngle($a); 452 453 // 454 // Step 1 . Split all slices that crosses 90 or 270 455 // 456 $idx=0; 457 $adjexplode=array(); 458 $numcolors = count($colors); 459 for($i=0; $i<count($data); ++$i, ++$idx ) { 460 $da = $data[$i]/$sum * 360; 461 462 if( empty($this->explode_radius[$i]) ) 463 $this->explode_radius[$i]=0; 464 465 $expscale=1; 466 if( $aaoption == 1 ) 467 $expscale=2; 468 469 $la = $a + $da/2; 470 $explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale, 471 $yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale ); 472 $adjexplode[$idx] = $explode; 473 $labeldata[$i] = array($la,$explode[0],$explode[1]); 474 $originalangles[$i] = array($a,$a+$da); 475 476 $ne = $this->NormAngle($a+$da); 477 if( $da <= 180 ) { 478 // If the slice size is <= 90 it can at maximum cut across 479 // one boundary (either 90 or 270) where it needs to be split 480 $split=-1; // no split 481 if( ($da<=90 && ($a <= 90 && $ne > 90)) || 482 (($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) { 483 $split = 90; 484 } 485 elseif( ($da<=90 && ($a <= 270 && $ne > 270)) || 486 (($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) { 487 $split = 270; 488 } 489 if( $split > 0 ) { // split in two 490 $angles[$idx] = array($a,$split); 491 $adjcolors[$idx] = $colors[$i % $numcolors]; 492 $adjexplode[$idx] = $explode; 493 $angles[++$idx] = array($split,$ne); 494 $adjcolors[$idx] = $colors[$i % $numcolors]; 495 $adjexplode[$idx] = $explode; 496 } 497 else { // no split 498 $angles[$idx] = array($a,$ne); 499 $adjcolors[$idx] = $colors[$i % $numcolors]; 500 $adjexplode[$idx] = $explode; 501 } 502 } 503 else { 504 // da>180 505 // Slice may, depending on position, cross one or two 506 // bonudaries 507 508 if( $a < 90 ) 509 $split = 90; 510 elseif( $a <= 270 ) 511 $split = 270; 512 else 513 $split = 90; 514 515 $angles[$idx] = array($a,$split); 516 $adjcolors[$idx] = $colors[$i % $numcolors]; 517 $adjexplode[$idx] = $explode; 518 //if( $a+$da > 360-$split ) { 519 // For slices larger than 270 degrees we might cross 520 // another boundary as well. This means that we must 521 // split the slice further. The comparison gets a little 522 // bit complicated since we must take into accound that 523 // a pie might have a startangle >0 and hence a slice might 524 // wrap around the 0 angle. 525 // Three cases: 526 // a) Slice starts before 90 and hence gets a split=90, but 527 // we must also check if we need to split at 270 528 // b) Slice starts after 90 but before 270 and slices 529 // crosses 90 (after a wrap around of 0) 530 // c) If start is > 270 (hence the firstr split is at 90) 531 // and the slice is so large that it goes all the way 532 // around 270. 533 if( ($a < 90 && ($a+$da > 270)) || 534 ($a > 90 && $a<=270 && ($a+$da>360+90) ) || 535 ($a > 270 && $this->NormAngle($a+$da)>270) ) { 536 $angles[++$idx] = array($split,360-$split); 537 $adjcolors[$idx] = $colors[$i % $numcolors]; 538 $adjexplode[$idx] = $explode; 539 $angles[++$idx] = array(360-$split,$ne); 540 $adjcolors[$idx] = $colors[$i % $numcolors]; 541 $adjexplode[$idx] = $explode; 542 } 543 else { 544 // Just a simple split to the previous decided 545 // angle. 546 $angles[++$idx] = array($split,$ne); 547 $adjcolors[$idx] = $colors[$i % $numcolors]; 548 $adjexplode[$idx] = $explode; 549 } 550 } 551 $a += $da; 552 $a = $this->NormAngle($a); 553 } 554 555 // Total number of slices 556 $n = count($angles); 557 558 for($i=0; $i<$n; ++$i) { 559 list($dbgs,$dbge) = $angles[$i]; 560 } 561 562 // 563 // Step 2. Find start index (first pie that starts in upper left quadrant) 564 // 565 $minval = $angles[0][0]; 566 $min = 0; 567 for( $i=0; $i<$n; ++$i ) { 568 if( $angles[$i][0] < $minval ) { 569 $minval = $angles[$i][0]; 570 $min = $i; 571 } 572 } 573 $j = $min; 574 $cnt = 0; 575 while( $angles[$j][1] <= 90 ) { 576 $j++; 577 if( $j>=$n) { 578 $j=0; 579 } 580 if( $cnt > $n ) { 581 JpGraphError::RaiseL(14005); 582 //("Pie3D Internal error (#1). Trying to wrap twice when looking for start index"); 583 } 584 ++$cnt; 585 } 586 $start = $j; 587 588 // 589 // Step 3. Print slices in z-order 590 // 591 $cnt = 0; 592 593 // First stroke all the slices between 90 and 270 (left half circle) 594 // counterclockwise 595 596 while( $angles[$j][0] < 270 && $aaoption !== 2 ) { 597 598 list($x,$y) = $adjexplode[$j]; 599 600 $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1], 601 $z,$adjcolors[$j],$shadow); 602 603 $last = array($x,$y,$j); 604 605 $j++; 606 if( $j >= $n ) $j=0; 607 if( $cnt > $n ) { 608 JpGraphError::RaiseL(14006); 609 //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); 610 } 611 ++$cnt; 612 } 613 614 $slice_left = $n-$cnt; 615 $j=$start-1; 616 if($j<0) $j=$n-1; 617 $cnt = 0; 618 619 // The stroke all slices from 90 to -90 (right half circle) 620 // clockwise 621 while( $cnt < $slice_left && $aaoption !== 2 ) { 622 623 list($x,$y) = $adjexplode[$j]; 624 625 $this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1], 626 $z,$adjcolors[$j],$shadow); 627 $j--; 628 if( $cnt > $n ) { 629 JpGraphError::RaiseL(14006); 630 //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); 631 } 632 if($j<0) $j=$n-1; 633 $cnt++; 634 } 635 636 // Now do a special thing. Stroke the last slice on the left 637 // halfcircle one more time. This is needed in the case where 638 // the slice close to 270 have been exploded. In that case the 639 // part of the slice close to the center of the pie might be 640 // slightly nagged. 641 if( $aaoption !== 2 ) 642 $this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0], 643 $angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow); 644 645 646 if( $aaoption !== 1 ) { 647 // Now print possible labels and add csim 648 $this->value->ApplyFont($img); 649 $margin = $img->GetFontHeight()/2 + $this->value->margin ; 650 for($i=0; $i < count($data); ++$i ) { 651 $la = $labeldata[$i][0]; 652 $x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin)*$this->ilabelposadj; 653 $y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin)*$this->ilabelposadj; 654 if( $this->ilabelposadj >= 1.0 ) { 655 if( $la > 180 && $la < 360 ) $y += $z; 656 } 657 if( $this->labeltype == 0 ) { 658 if( $sum > 0 ) 659 $l = 100*$data[$i]/$sum; 660 else 661 $l = 0; 662 } 663 elseif( $this->labeltype == 1 ) { 664 $l = $data[$i]; 665 } 666 else { 667 $l = $this->adjusted_data[$i]; 668 } 669 if( isset($this->labels[$i]) && is_string($this->labels[$i]) ) 670 $l=sprintf($this->labels[$i],$l); 671 672 $this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z); 673 674 $this->Add3DSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z, 675 $originalangles[$i][0],$originalangles[$i][1]); 676 } 677 } 678 679 // 680 // Finally add potential lines in pie 681 // 682 683 if( $edgecolor=="" || $aaoption !== 0 ) return; 684 685 $accsum = 0; 686 $a = $startangle; 687 $a = $this->NormAngle($a); 688 689 $a *= M_PI/180.0; 690 691 $idx=0; 692 $img->PushColor($edgecolor); 693 $img->SetLineWeight($edgeweight); 694 695 $fulledge = true; 696 for($i=0; $i < count($data) && $fulledge; ++$i ) { 697 if( empty($this->explode_radius[$i]) ) 698 $this->explode_radius[$i]=0; 699 if( $this->explode_radius[$i] > 0 ) { 700 $fulledge = false; 701 } 702 } 703 704 705 for($i=0; $i < count($data); ++$i, ++$idx ) { 706 707 $da = $data[$i]/$sum * 2*M_PI; 708 $this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor, 709 $this->explode_radius[$i],$fulledge); 710 $a += $da; 711 } 712 $img->PopColor(); 713 } 714 715 function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) { 716 $step = 0.02; 717 718 if( $exploderadius > 0 ) { 719 $la = ($sa+$ea)/2; 720 $xc += $exploderadius*cos($la); 721 $yc -= $exploderadius*sin($la) * ($h/$w) ; 722 723 } 724 725 $p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa)); 726 727 for($a=$sa; $a < $ea; $a += $step ) { 728 $p[] = $xc + $w*cos($a); 729 $p[] = $yc - $h*sin($a); 730 } 731 732 $p[] = $xc+$w*cos($ea); 733 $p[] = $yc-$h*sin($ea); 734 $p[] = $xc; 735 $p[] = $yc; 736 737 $img->SetColor($edgecolor); 738 $img->Polygon($p); 739 740 // Unfortunately we can't really draw the full edge around the whole of 741 // of the slice if any of the slices are exploded. The reason is that 742 // this algorithm is to simply. There are cases where the edges will 743 // "overwrite" other slices when they have been exploded. 744 // Doing the full, proper 3D hidden lines stiff is actually quite 745 // tricky. So for exploded pies we only draw the top edge. Not perfect 746 // but the "real" solution is much more complicated. 747 if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) { 748 749 if($sa < M_PI && $ea > M_PI) 750 $sa = M_PI; 751 752 if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) ) 753 $ea = 2*M_PI; 754 755 if( $sa >= M_PI && $ea <= 2*M_PI ) { 756 $p = array($xc + $w*cos($sa),$yc - $h*sin($sa), 757 $xc + $w*cos($sa),$z + $yc - $h*sin($sa)); 758 759 for($a=$sa+$step; $a < $ea; $a += $step ) { 760 $p[] = $xc + $w*cos($a); 761 $p[] = $z + $yc - $h*sin($a); 762 } 763 $p[] = $xc + $w*cos($ea); 764 $p[] = $z + $yc - $h*sin($ea); 765 $p[] = $xc + $w*cos($ea); 766 $p[] = $yc - $h*sin($ea); 767 $img->SetColor($edgecolor); 768 $img->Polygon($p); 769 } 770 } 771 } 772 773 function Stroke($img,$aaoption=0) { 774 $n = count($this->data); 775 776 // If user hasn't set the colors use the theme array 777 if( $this->setslicecolors==null ) { 778 $colors = array_keys($img->rgb->rgb_table); 779 sort($colors); 780 $idx_a=$this->themearr[$this->theme]; 781 $ca = array(); 782 $m = count($idx_a); 783 for($i=0; $i < $m; ++$i) 784 $ca[$i] = $colors[$idx_a[$i]]; 785 $ca = array_reverse(array_slice($ca,0,$n)); 786 } 787 else { 788 $ca = $this->setslicecolors; 789 } 790 791 792 if( $this->posx <= 1 && $this->posx > 0 ) 793 $xc = round($this->posx*$img->width); 794 else 795 $xc = $this->posx ; 796 797 if( $this->posy <= 1 && $this->posy > 0 ) 798 $yc = round($this->posy*$img->height); 799 else 800 $yc = $this->posy ; 801 802 if( $this->radius <= 1 ) { 803 $width = floor($this->radius*min($img->width,$img->height)); 804 // Make sure that the pie doesn't overflow the image border 805 // The 0.9 factor is simply an extra margin to leave some space 806 // between the pie an the border of the image. 807 $width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9)); 808 } 809 else { 810 $width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ; 811 } 812 813 // Add a sanity check for width 814 if( $width < 1 ) { 815 JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0"); 816 } 817 818 // Establish a thickness. By default the thickness is a fifth of the 819 // pie slice width (=pie radius) but since the perspective depends 820 // on the inclination angle we use some heuristics to make the edge 821 // slightly thicker the less the angle. 822 823 // Has user specified an absolute thickness? In that case use 824 // that instead 825 826 if( $this->iThickness ) { 827 $thick = $this->iThickness; 828 $thick *= ($aaoption === 1 ? 2 : 1 ); 829 } 830 else 831 $thick = $width/12; 832 $a = $this->angle; 833 if( $a <= 30 ) $thick *= 1.6; 834 elseif( $a <= 40 ) $thick *= 1.4; 835 elseif( $a <= 50 ) $thick *= 1.2; 836 elseif( $a <= 60 ) $thick *= 1.0; 837 elseif( $a <= 70 ) $thick *= 0.8; 838 elseif( $a <= 80 ) $thick *= 0.7; 839 else $thick *= 0.6; 840 841 $thick = floor($thick); 842 843 if( $this->explode_all ) 844 for($i=0; $i < $n; ++$i) 845 $this->explode_radius[$i]=$this->explode_r; 846 847 $this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle, 848 $thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight); 849 850 // Adjust title position 851 if( $aaoption != 1 ) { 852 $this->title->SetPos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom"); 853 $this->title->Stroke($img); 854 } 855 } 856 857 //--------------- 858 // PRIVATE METHODS 859 860 // Position the labels of each slice 861 function StrokeLabels($label,$img,$a,$xp,$yp,$z) { 862 $this->value->halign="left"; 863 $this->value->valign="top"; 864 865 // Position the axis title. 866 // dx, dy is the offset from the top left corner of the bounding box that sorrounds the text 867 // that intersects with the extension of the corresponding axis. The code looks a little 868 // bit messy but this is really the only way of having a reasonable position of the 869 // axis titles. 870 $this->value->ApplyFont($img); 871 $h=$img->GetTextHeight($label); 872 // For numeric values the format of the display value 873 // must be taken into account 874 if( is_numeric($label) ) { 875 if( $label >= 0 ) 876 $w=$img->GetTextWidth(sprintf($this->value->format,$label)); 877 else 878 $w=$img->GetTextWidth(sprintf($this->value->negformat,$label)); 879 } 880 else 881 $w=$img->GetTextWidth($label); 882 while( $a > 2*M_PI ) $a -= 2*M_PI; 883 if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0; 884 if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI; 885 if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1; 886 if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI); 887 888 if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI; 889 if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI); 890 if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1; 891 if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI); 892 if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0; 893 894 $x = round($xp-$dx*$w); 895 $y = round($yp-$dy*$h); 896 897 898 // Mark anchor point for debugging 899 /* 900 $img->SetColor('red'); 901 $img->Line($xp-10,$yp,$xp+10,$yp); 902 $img->Line($xp,$yp-10,$xp,$yp+10); 903 */ 904 $oldmargin = $this->value->margin; 905 $this->value->margin=0; 906 $this->value->Stroke($img,$label,$x,$y); 907 $this->value->margin=$oldmargin; 908 909 } 910 } // Class 911 912 /* EOF */ 913 ?>
titre
Description
Corps
titre
Description
Corps
titre
Description
Corps
titre
Corps
Généré le : Sat Nov 24 09:27:55 2007 | par Balluche grâce à PHPXref 0.7 |
![]() |